Widespread peroxynitrite-mediated damage in Alzheimer's disease.

نویسندگان

  • M A Smith
  • P L Richey Harris
  • L M Sayre
  • J S Beckman
  • G Perry
چکیده

Increasing evidence suggests that oxidative damage to proteins and other macromolecules is a salient feature of the pathology of Alzheimer's disease. Establishing the source of oxidants is key to understanding what role they play in the pathogenesis of Alzheimer's disease, and one way to examine this issue is to determine which oxidants are involved in damage. In this study, we examine whether peroxynitrite, a powerful oxidant produced from the reaction of superoxide with nitric oxide, is involved in Alzheimer's disease. Peroxynitrite is a source of hydroxyl radical-like reactivity, and it directly oxidizes proteins and other macromolecules with resultant carbonyl formation from side-chain and peptide-bond cleavage. Although carbonyl formation is a major oxidative modification induced by peroxynitrite, nitration of tyrosine residues is an indicator of peroxynitrite involvement. In brain tissue from cases of Alzheimer's disease, we found increased protein nitration in neurons, including but certainly not restricted to those containing neurofibrillary tangles (NFTs). Conversely, nitrotyrosine was undetectable in the cerebral cortex of age-matched control brains. This distribution is essentially identical to that of free carbonyls. These findings provide strong evidence that peroxynitrite is involved in oxidative damage of Alzheimer's disease. Moreover, the widespread occurrence of nitrotyrosine in neurons suggests that oxidative damage is not restricted to long-lived polymers such as NFTs, but instead reflects a generalized oxidative stress that is important in disease pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 62: Markers of Neuroinflammation Related to Alzheimer\'s Disease Pathology in the Elderly

Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on marke...

متن کامل

Protective capacities of certain spices against peroxynitrite-mediated biomolecular damage.

Peroxynitrite, a potent cytotoxic agent, can damage a variety of biomolecules such as proteins, lipids, and DNA, and is considered as one of the major pathological causes of several diseases. Therefore, it would appear likely that interception of peroxynitrite by certain dietary compounds may represent one mechanism by which such foods may exert their beneficial action in vivo. A number of rese...

متن کامل

Lack of oestrogen protection in amyloid-mediated endothelial damage due to protein nitrotyrosination.

Amyloid beta-peptide (Abeta) cytotoxicity, the hallmark of Alzheimer's disease, implicates oxidative stress in both neurons and vascular cells, particularly endothelial cells. Consequently, antioxidants have shown neuroprotective activities against Abeta-induced cytotoxicity. Among the different antioxidants used in both in vitro and in vivo studies, 17beta-oestradiol (E2) has garnered the most...

متن کامل

Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation.

Alzheimer's disease neuropathology is characterized by neuronal death, amyloid beta-peptide deposits and neurofibrillary tangles composed of paired helical filaments of tau protein. Although crucial for our understanding of the pathogenesis of Alzheimer's disease, the molecular mechanisms linking amyloid beta-peptide and paired helical filaments remain unknown. Here, we show that amyloid beta-p...

متن کامل

Category-specific semantic deficits in focal and widespread brain damage: a computational account.

Category-specific semantic impairments have been explained in terms of preferential damage to different types of features (e.g., perceptual vs. functional). This account is compatible with cases in which the impairments were the result of relatively focal lesions, as in herpes encephalitis. Recently, however, there have been reports of category-specific impairments associated with Alzheimer's d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 1997